Sunday, November 30, 2008

Polyunsaturated Fat Intake: Effects on the Heart and Brain

I'm revisiting the topic of the omega-6/omega-3 balance and total polyunsaturated fat (PUFA) intake because of some interesting studies I've gotten a hold of lately (thanks Robert). Two of the studies are in pigs, which I feel are a decent model organism for studying the effect of diet on health as it relates to humans. Pigs are omnivorous (although more slanted toward plant foods), have a similar digestive system to humans (although sturdier), are of similar size and fat composition to humans, and have been eating grains for about the same amount of time as humans.

In the last post on the omega-6/omega-3 balance, I came to the conclusion that a roughly balanced but relatively low intake of omega-6 and omega-3 fats is consistent with the diets of healthy non-industrial cultures. There were a few cultures that had a fairly high long-chain omega-3 intake from seafood (10% of calories), but none ate much omega-6.

The
first study explores the effect of omega-6 and omega-3 fats on heart function. Dr. Sheila Innis and her group fed young male pigs three different diets:
  1. An unbalanced, low PUFA diet. Pig chow with 1.2% linoleic acid (LA; the main omega-6 plant fat) and 0.06% alpha linolenic acid (ALA; the main omega-3 plant fat).
  2. A balanced, low PUFA diet. Pig chow with 1.4% LA and 1.2% ALA.
  3. An unbalanced, but better-than-average, "modern diet". Pig chow with 11.6% LA and 1.2% ALA.
After 30 days, they took a look at the pigs' hearts. Pigs from the first and third (unbalanced) groups contained more "pro-inflammatory" fats (arachidonic acid; AA) and less "anti-inflammatory" fats (EPA and DHA) than the second group. The first and third groups also experienced an excessive activation of "pro-inflammatory" proteins, such as COX-2, the enzyme inhibited by aspirin, ibuprofen and other NSAIDs.

The most striking finding of all was the difference in lipid peroxidation between groups. Lipid peroxidation is a measure of oxidative damage to cellular fats. In the balanced diet hearts, peroxidation was half the level found in the first group, and one-third the level found in the third group!
This shows that omega-3 fats exert a powerful anti-oxidant effect that can be more than counteracted by excessive omega-6. Nitrosative stress, another type of damage, tracked with n-6 intake regardless of n-3, with the third group almost tripling the first two. I think this result is highly relevant to the long-term development of cardiac problems, and perhaps cardiovascular disease in general.

In
another study with the same lead author Sanjoy Ghosh, rats fed a diet enriched in omega-6 from sunflower oil showed an increase in nitrosative damage, damage to mitochondrial DNA, and a decrease in maximum cardiac work capacity (i.e., their hearts were weaker). This is consistent with the previous study and shows that the mammalian heart does not like too much omega-6! The amount of sunflower oil these rats were eating (20% food by weight) is not far off from the amount of industrial oil the average American eats.

A third paper by Dr. Sheila Innis' group studied the effect of the omega-6 : omega-3 balance on the brain fat composition of pigs, and the development of neurons
in vitro (in a culture dish). There were four diets, the first three similar to those in the first study:
  1. Deficient. 1.2% LA and 0.05% ALA.
  2. Contemporary. 10.7% LA and 1.1% ALA.
  3. Evolutionary. 1.2% LA and 1.1% ALA.
  4. Supplemented. The contemporary diet plus 0.3% AA and 0.3% DHA.
The first thing they looked at was the ability of the animals to convert ALA to DHA and concentrate it in the brain. DHA is critical for brain and eye development and maintenance. The evolutionary diet was most effective at putting DHA in the brain, with the supplemented diet a close second and the other three lagging behind. The evolutionary diet was the only one capable of elevating EPA, another important fatty acid derived from ALA. If typical fish oil rather than isolated DHA and AA had been given as the supplement, that may not have been the case. Overall, the fatty acid composition of the brain was quite different in the evolutionary group than the other three groups, which will certainly translate into a variety of effects on brain function.

The researchers then cultured neurons and showed that they require DHA to develop properly in culture, and that long-chain omega-6 fats are a poor substitute. Overall, the paper shows that the modern diet causes a major fatty acid imbalance in the brain, which is expected to lead to developmental problems and probably others as well. This can be partially corrected by supplementing with fish oil.


Together, these studies are a small glimpse of the countless effects we are having on every organ system, by eating fats that are unfamiliar to our pre-industrial bodies. In the next post, I'll put this information into the context of the modern human diet.