Thursday, February 26, 2009

Dietary Fiber and Mineral Availability

Mainstream health authorities are constantly telling us to eat more fiber for health, particularly whole grains, fruit and vegetables. Yet the only clinical trial that has ever isolated the effect of eating a high-fiber diet on overall risk of death, the Diet and Reinfarction Trial, came up with this graph:



Oops! How embarrassing. At two years, the group that doubled its fiber intake had a 27% greater chance of dying and a 23% greater chance of having a heart attack. The extra fiber was coming from whole grains. I should say, out of fairness, that the result wasn't quite statistically significant (p less than 0.05) at two years. But at the very least, this doesn't support the idea that increasing fiber will extend your life. I believe this the only diet trial that has ever looked at fiber and mortality, without also changing other variables at the same time.

Why might fiber be problematic? I read a paper recently that gave a pretty convincing answer to that question: "Dietary Fibre and Mineral Bioavailability", by Dr. Barbara F. Hartland. By definition, fiber is indigestible. We can divide it into two categories: soluble and insoluble. Insoluble fiber is mostly cellulose and it's relatively inert, besides getting fermented a bit by the gut flora. Soluble fiber is anything that can be dissolved in water but not digested by the human digestive tract. It includes a variety of molecules, some of which are quite effective at keeping you from absorbing minerals. Chief among these is phytic acid, with smaller contributions from tannins (polyphenols) and oxalates. The paper makes a strong case that phytic acid is the main reason fiber prevents mineral absorption, rather than the insoluble fiber fraction. This notion was confirmed here.

As a little side note, polyphenols are those wonderful plant antioxidants that are one of the main justifications for the supposed health benefits of vegetables, tea, chocolate, fruits and antioxidant supplements. The problem is, many of them are actually anti-nutrients. They reduce mineral absorption, reduce growth and feed efficiency in a number of species, and the antioxidant effect seen in human plasma after eating them is due largely to our own bodies secreting uric acid into the blood (a defense mechanism?), rather than the polyphenols themselves. The main antioxidants in plasma are uric acid, vitamin C and vitamin E, with almost no direct contribution from polyphenols. I'm open to the idea that some polyphenols could be beneficial if someone can show me convincing data, but in any case they are not the panacea they're made out to be. Thanks to Peter for cluing me in on this.

Whole grains would be a good source of water-soluble vitamins and minerals, if it weren't for their very high phytic acid content. Even though whole grains are full of minerals, replacing refined grains with whole grains in the diet (and especially adding extra bran) actually reduces the overall absorption of a number of minerals (free text, check out table 4). This has been confirmed repeatedly for iron, zinc, calcium, magnesium and phosphorus. That could well account for the increased mortality in the DART trial.

Refining grains gets rid of the vitamins and minerals but at least refined grains don't prevent you from absorbing the minerals in the rest of your food. Here's a comparison of a few of the nutrients in one cup of cooked brown vs. unenriched white rice (218 vs. 242 calories):

Brown rice would be quite nutritious if we could absorb all those minerals. There are a few ways to increase mineral absorption from whole grains. One way is to soak them in slightly acidic, warm water, which allows their own phytase enzyme to break down phytic acid. This doesn't seem to do much for brown rice, which doesn't contain much phytase.

A more effective method is to grind grains and soak them before cooking, which helps the phytase function more effectively, especially in gluten grains and buckwheat. The most effective method by far, and the method of choice among healthy traditional cultures around the world, is to soak, grind and ferment whole grains. This breaks down nearly all the phytic acid, making whole grains a good source of both minerals and vitamins.

The paper "Dietary Fibre and Mineral Bioavailability" listed another method of increasing mineral absorption from whole grains that I wasn't aware of. Certain foods can increase the absorption of minerals from whole grains high in phytic acid. These include: foods rich in vitamin C such as fruit or potatoes; meat including fish; and dairy.

Another point the paper made was that the phytic acid content of vegetarian diets is often very high, potentially leading to mineral deficiencies. The typical modern vegetarian diet containing brown rice and unfermented soy products is very high in phytic acid and thus very low in absorbable minerals. The more your diet depends on plant sources for minerals, the more careful you have to be about how you prepare your food.

Just a Reminder

I will not tolerate comments that are disrespectful or threatening to other commenters or myself. Feel free to disagree with anyone here, including me, in a courteous tone. I enjoy the intelligent discussions we have here, and I don't want them to degenerate into troll wars.

Wednesday, February 25, 2009

President’s Blog - Clinical Services Plan (CSP)

By Rik Ganderton - President and CEO, RVHS

Tuesday, the Board of Directors of Rouge Valley Health System received information on the Hospital Clinical Services Plan. The information was presented by Central East Local Health Integration Network (CE LHIN) Board Chair Foster Loucks and CSP Project Manager Susan Plewes.

The full plan was released on February 17th when it was presented to the CE LHIN Board of Directors.

The plan represents the first phase and the initial steps towards "One Acute Care Network" which is defined as;

Improved and equitable patient access to an integrated hospital system that provides the highest quality of care across the Central East LHIN.

The plan covers five program areas (Cardiac, Mental Health, Maternal Child Youth, Thoracic Surgery and Vascular Surgery) as well as recommendations relating to Physician credentialing, Regional On Call coverage and central scheduling for operating rooms.

Our board fully supports the vision of "One acute Care Network" and sees the value in the direction of the recommendations contained in the CSP. We look forward to working in partnership with the LHIN and other health care providers throughout the central east area as the CSP is communicated, by the LHIN, to its partners during the next several weeks.

The Clinical Services Plan includes (amongst other things) a recommendation to make Rouge Valley the regional centre for cardiac care in Scarborough and Durham, which is both an affirmation of our existing role and confirmation of one of the hospital's strategic directions set more than 18 months ago.

The Central East LHIN presentation to our hospital board was the first of several presentations to health care providers in the Central East area, stretching from Haliburton to Peterborough, through Durham and into Scarborough.

We are examining the plan in greater detail and we are now going to consult with our internal stakeholders to understand their perspectives as part of the CE LHIN's requested feedback process.

Further details on the plan have been presented at recent Town Halls, joint Board, MAC and Management meetings and will be shared with the Leadership Forum and the Medical Staff Society during the next few weeks. Summary detail is available on the RVHS Intranet and the full report is available on the LHIN website.

Tuesday, February 24, 2009

A few thoughts on Minerals, Milling, Grains and Tubers

One of the things I've been noticing in my readings on grain processing and mineral bioavailability is that it's difficult to make whole grains into a good source of minerals. Whole grains naturally contain more minerals that milled grains where the bran and germ are removed, but most of the minerals are bound up in ways that prevent their absorption.

The phytic acid content of whole grains is the main reason for their low mineral bioavailability. Brown rice, simply cooked, provides very little iron and essentially no zinc due to its high concentration of phytic acid. Milling brown rice, which turns it into white rice, removes most of the minerals but also most of the phytic acid, leaving mineral bioavailability similar to or perhaps even better than brown rice (the ratio of phytic acid to iron and zinc actually decreases after milling rice). If you're going to throw rice into the rice cooker without preparing it first, white rice is probably better than brown overall. Either way, the mineral availability of rice is low. Here's how Dr. Robert Hamer's group put it when they evaluated the mineral content of 56 varieties of Chinese rice:
This study shows that the mineral bio-availability of Chinese rice varieties will be [less than] 4%. Despite the variation in mineral contents, in all cases the [phytic acid] present is expected to render most mineral present unavailable. We conclude that there is scope for optimisation of mineral contents of rice by matching suitable varieties and growing regions, and that rice products require processing that retains minerals but results in thorough dephytinisation.
It's important to note that milling removes most of the vitamin content of the brown rice as well, another important factor.

Potatoes and other tubers contain much less phytic acid than whole grains, which may be one reason why they're a common feature of extremely healthy cultures such as the Kitavans. I went on NutritionData to see if potatoes have a better mineral-to-phytic acid ratio than grains. They do have a better ratio than whole grains, although whole grains contain more total minerals.

Soaking grains reduces their phytic acid content, but the extent depends on the grain. Gluten grain flours digest their own phytic acid very quickly when soaked, due to the presence of the enzyme phytase. Because of this, bread is fairly low in phytic acid, although whole grain yeast breads contain more than sourdough breads. Buckwheat flour also has a high phytase activity. The more intact the grain, the slower it breaks down its own phytic acid upon soaking. Some grains, like rice, don't have much phytase activity so they degrade phytic acid slowly. Other grains, like oats and kasha, are toasted before you buy them, which kills the phytase.

Whole grains generally contain so much phytic acid that modest reductions don't free up much of the mineral content for absorption. Many of the studies I've read, including this one, show that soaking brown rice doesn't really free up its zinc or iron content. But I like brown rice, so I want to find a way to prepare it well. It's actually quite rich in vitamins and minerals if you can absorb them.

One of the things many of these studies overlook is the effect of pH on phytic acid degradation. Grain phytase is maximally active around pH 4.5-5.5. That's slightly acidic. Most of the studies I've read soaked rice in water with a neutral pH, including the one above. Adding a tablespoon of whey, yogurt, vinegar or lemon juice per cup of grains to your soaking medium will lower the pH and increase phytase activity. Temperature is also an important factor, with 50 C (122 F) being the optimum. I like to put my soaking grains and beans on the heating vent in my kitchen.

I don't know exactly how much adding acid and soaking at a warm temperature will increase the mineral availability of brown rice (if at all), because I haven't found it in the literature. The bacteria present if you soak it in whey, unfiltered vinegar or yogurt could potentially aid the digestion of phytic acid. Another strategy is to add the flour of a high-phytase grain like buckwheat to the soaking medium. This works for soaking flours, perhaps it would help with whole grains as well?

So now we come to the next problem. Phytic acid is a medium-sized molecule. If you break it down and it lets go of the minerals it's chelating, the minerals are more likely to diffuse out of the grain into your soaking medium, which you then discard because it also contains the tannins, saponins and other anti-nutrients that you want to get rid of. That seems to be exactly what happens, at least in the case of brown rice.

So what's the best solution for maximal mineral and vitamin content? Do what traditional cultures have been doing for millenia: soak, grind and ferment whole grains. This eliminates nearly all the phytic acid, dramatically increasing mineral bioavailiability. Fermenting batter doesn't lose minerals because there's nowhere for them to go. In the West, we use this process to make bread, which would probably be a good food if it weren't for the gluten. In Africa, they do it to make ogi, injera, and a number of other fermented grain dishes. In India, they grind rice and beans to make idli and dosas. In the Phillipines, they ferment ground rice to make puto. Fermenting ground whole grains is the most reliable way to improve their mineral bioavailability and nutritional value in general.

But isn't having a rice cooker full of steaming brown rice so nice? I'm still working on finding a reliable way to increase its nutritional value.

Get moving for better health

Heart Month a great time to get up, and get moving

By Dr. Amir Janmohamed / Rouge Valley Cardiologist


February is Heart Month. And as we use this month to focus on the importance of heart health, if you’re not already incorporating ways to keep your heart healthy, there’s no better time than now to start.

Regardless of age, it’s never too late to add physical activity to your life. And making it a regular part of your life can turn out to be a lifesaver. Just 30 to 60 minutes of exercise a day can help you to dramatically lower your risk of heart disease and stroke. It can also help to control or even prevent risk factors such as high blood pressure, high cholesterol and obesity. As well, it improves your sense of well being and quality of life.

Light activities such as walking, gardening or yoga are great ways to get started. If you’re ready for more moderate activities, try brisk walking, swimming, cycling or dancing.

While physical activity can help prevent heart disease, stroke and many other conditions, remember that vigorous physical activity can be strenuous in extreme weather conditions, such as frigid cold temperatures, smog, and intense summer heat. The Heart and Stroke Foundation of Ontario recommends approaching activities such as shoveling snow in cold weather, with caution, especially if you have been diagnosed with heart disease, high blood pressure, or lead an inactive lifestyle.

Here are some tips to remember when exercising in extreme weather conditions:
• Prepare for the activity by doing a few minutes of a warm-up activity like walking, to slowly increase your heart rate;
• Take frequent breaks to prevent your body from becoming strained;
• If you need to complete an urgent task, such as clearing snow, ask family or friends for help;
• When shoveling snow, stop if you feel tired;
• Wear weather-appropriate clothing, and keep water close by to stay hydrated.

Almost anyone can benefit from a more active lifestyle. And if you have other health issues such as arthritis or osteoporosis, it can help to keep you mobile. If you have already had a heart attack, physical activity can help to prevent another one.

Of course, always consult your physician or healthcare provider before beginning any physical activity regimen.

Dr. Amir Janmohamed is a cardiologist at Rouge Valley Health System.

Monday, February 23, 2009

Day Six – Remote Eye Camp, Pondicherry

Rock Stars



This is it – our last day in India. Dr. Nachiar, one of the founders of Aravind, picked us up to visit the Eye Camp, an hour outside of Pondicherry. I said that it was sure to be a big turn out once they knew she would be there, but she smiled, and said no, they were coming to see us. Little did we know what she meant until we arrived. Huge printed posters in English and Tamil announced our arrival, along with thanks to the “Bill Gates Foundation” (sic). The crowd was enormous. Politicians from all corners had descended, and were all waiting for us at the gate of the local school. Much handshaking and bowing greeted us, and a massive amount of picture and video taking. We felt like big celebrities, but weren’t quite sure why.

Once the initial greeting finished, we began our tour of the Eye Camp. This town has been hosting them for more than 30 years. These monthly eye camps allow local populations to receive screening and a host of other services. It takes place at an elementary school, with the teachers and administrators serving as part of the volunteer staff. There is an almost carnival atmosphere to the event, with children playing and attendees chatting with their neighbors while they stand in line.

The flow is the same system we saw at all the hospitals, starting with registration and blood sugar tests, and moving through refractory, glaucoma screening, cataract screening, and all the other stages of the well-care eye visit. Those thinking they have a cataract come to the camp with a bag of overnight items, as they will be transported from the camp to the hospital that afternoon. Both the transport and the surgery and stay will be free of cost. Anyone found needing glasses can pick out their frames and have the glasses made right at the eye camp. They bring an extensive selection of lens strengths, along with frame styles to the camp. There are also prescription eye medications available, if needed.

After our tour of the Eye Camp, we were seated on a dais for a short program in our honor. Many speeches followed, including one from the local businessman who started it all 30 years ago. He has nine children, and began his philanthropy when he was poor. Now his adult children help sponsor the monthly eye camps, and are all highly-respected members of the community. The visit ended with a lovely ceremony where we were all given gifts. We then had our pictures taken with some of the recipients of hand-cycles donated by the same family trust.

Pottu Varan
Back to Pondicherry for lunch, and then our last ride to Chennai to meet our planes. Our driver took us on a different road this time, one that winds along the coast. We passed vast salt fields, and areas affected by the tsunami. We also drove close to the temples of Mahabalipuram, an extensive archeological dig that unearthed a series of shrines carved out of the living rock more than 1,200 years ago.

We arrived in Chennai and said our goodbyes, both to each other, and to India. We all experienced an incredible organization in action, along with the background culture that has formed Aravind. What an amazing trip.

Pottu varan (“Goodbye” in Tamil) –
Dawn

Sunday, February 22, 2009

Day Five – Auroville and Aurobindo Ashram

Bookmark and Share


Today was a bit of a departure for our group. Instead of looking to the physical and organizational backbone of Aravind, we explored some of its philosophical underpinnings. Aravind’s founder, Dr. Venkataswamy, was a follower of the scholar and spiritual guru, Sri Aurobindo. His teachings, and those of the Mother, one of his followers, were an ever-present guidepost for Dr. V in his pursuit of a more effective health system for eye care.

Our first visit was to Auroville, the Utopian realm envisioned by the philosophers. About 2,000 people live there now – approximately 1,500 adults and 500 children. Through a national mandate, residents of Auroville are not considered residents of India. Rather, they retain citizenship of their home countries. Auroville’s residents work in the community where all is provided for in exchange for a percentage of their income. Everyone there is focused on change: spiritual, global and internal.

After watching the video describing Auroville and its goals, two of its residents gave us a tour of their community. We visited a newly-built clinic, devoted to working with all types of medical treatment including traditional, ayurvedic, homeopathic and more. The doctor in charge is from Kazakhstan, and already has a number of practioners of various forms of healing on staff. We then had lunch with our hosts in their solar-powered Community Kitchen.
Later that afternoon, we visited the Sri Aurobindo Ashram in downtown Pondicherry where both the Sri Aurobindo and the Mother lived and are now enshrined.

After a bit of shopping, some of us walked along the Indian Ocean beach, stopping to admire the statue of Gandhi. Having the opportunity to explore the spiritual background of this amazing organization and country is tremendous. It gives me just a bit more insight into the incredibly altruistic actions of the leadership team. Tomorrow is our last day in India, and we will be closing with a bang – an eye camp in a village known for its cashews and longevity of service to Aravind.

Goodnight,
Dawn

Saturday, February 21, 2009

How to Eat Grains

Our story begins in East Africa in 1935, with two Bantu tribes called the Kikuyu and the Wakamba. Their traditional diets were mostly vegetarian and consisted of sweet potatoes, corn, beans, plantains, millet, sorghum, wild mushrooms and small amounts of dairy, small animals and insects. Their food was agricultural, high in carbohydrate and low in fat.

Dr. Weston Price found them in good health, with well-formed faces and dental arches, and a dental cavity rate of roughly 6% of teeth. Although not as robust or as resistant to tooth decay as their more carnivorous neighbors, the "diseases of civilization" such as cardiovascular disease and obesity were nevertheless rare among them. South African Bantu eating a similar diet have a low prevalence of atherosclerosis, and a measurable but low incidence of death from coronary heart disease, even in old age.

How do we reconcile this with the archaeological data showing a general decline in human health upon the adoption of agriculture? Humans did not evolve to tolerate the toxins, anti-nutrients and large amounts of fiber in grains and legumes. Our digestive system is designed to handle a high-quality omnivorous diet. By high-quality, I mean one that has a high ratio of calories to indigestible material (fiber). Our species is very good at skimming off the highest quality food in nearly any ecological niche. Animals that are accustomed to high-fiber diets, such as cows and gorillas, have much larger, more robust and more fermentative digestive systems.

One factor that reconciles the Bantu data with the archaeological data is that much of the Kikuyu and Wakamba diet came from non-grain sources. Sweet potatoes and plantains are similar to the starchy wild plants our ancestors have been eating for nearly two million years, since the invention of fire (the time frame is debated but I think everyone agrees it's been a long time). Root vegetables and starchy fruit have a higher nutrient bioavailibility than grains and legumes due to their lower content of anti-nutrients and fiber.

The second factor that's often overlooked is food preparation techniques. These tribes did not eat their grains and legumes haphazardly! This is a factor that was overlooked by Dr. Price himself, but has been emphasized by Sally Fallon. Healthy grain-based African cultures typically soaked, ground and fermented their grains before cooking, creating a sour porridge that's nutritionally superior to unfermented grains. The bran was removed from corn and millet during processing, if possible. Legumes were always soaked prior to cooking.

These traditional food processing techniques have a very important effect on grains and legumes that brings them closer in line with the "paleolithic" foods our bodies are designed to digest. They reduce or eliminate toxins such as lectins and tannins, greatly reduce anti-nutrients such as phytic acid and protease inhibitors, and improve vitamin content and amino acid profile. Fermentation is particularly effective in this regard. One has to wonder how long it took the first agriculturalists to discover fermentation, and whether poor food preparation techniques or the exclusion of animal foods could account for their poor health.

I recently discovered a paper that illustrates these principles: "Influence of Germination and Fermentation on Bioaccessibility of Zinc and Iron from Food Grains". It's published by Indian researchers who wanted to study the nutritional qualities of traditional fermented foods. One of the foods they studied was idli, a South Indian steamed "muffin" made from rice and beans. Idlis happen to be one of my favorite foods.

The amount of minerals your digestive system can extract from a food depends in part on the food's phytic acid content. Phytic acid is a molecule that traps certain minerals (iron, zinc, magnesium, calcium), preventing their absorption. Raw grains and legumes contain a lot of it, meaning you can only absorb a fraction of the minerals present in them.

In this study, soaking had a modest effect on the phytic acid content of the grains and legumes examined (although it's generally more effective). Fermentation, on the other hand, completely broke down the phytic acid in the idli batter, resulting in 71% more bioavailable zinc and 277% more bioavailable iron. It's safe to assume that fermentation also increased the bioavailability of magnesium, calcium and other phytic acid-bound minerals.

Fermenting the idli batter also completely eliminated its tannin content. Tannins are a class of molecules found in many plants that are toxins and anti-nutrients. They reduce feed efficiency and growth rate in a variety of species.

Lectins are another toxin that's frequently mentioned in the paleolithic diet community. They are blamed for everything from digestive problems to autoimmune disease, probably with good reason. One of the things people like to overlook in this community is that traditional processing techniques such as soaking, sprouting, fermentation and cooking, greatly reduce or eliminate lectins from grains and legumes. One notable exception is gluten, which survives all but the longest fermentation and is not broken down by cooking.

Soaking, sprouting, fermenting, grinding and cooking are the techniques by which traditional cultures have been making the most of grain and legume-based diets for thousands of years. We ignore these time-honored traditions at our own peril.

Day Four – Pondicherry Hospital, Pondicherry

Bookmark and Share

We gathered for our morning flight to Chennai (old Madras), where we were met by Aravind staff from the Pondicherry Hospital. Pondicherry is the most recently built of the five main Aravind base hospitals. Where the physical plant of Aravind Madurai was expanded as resources and demand grew, Pondicherry sprang fully-formed from the architect’s pen.

Situated on 70 acres just outside of the city, the campus includes two large residential areas that house not only the sisters that work at the hospital, but also many of the doctors and their families. This beautiful building is an engineering marvel. Many systems found in the other hospitals are found here, but it is also host to many new innovations. One of the most exciting is the water reclamation system. All sewage water goes into a series of celled cisterns, and left to sit for a certain period of time after which a mixture of aerobic and anaerobic bacteria is created. Through a series of containment and flow through rocks, the end result is water at the highest level of purity.

The central section of the main hospital building houses the operating theaters and specialty clinics. As you walk in, you are greeted with a beautiful open space in the middle of the building with lush plantings and statuary. The buildings on either side house the post-op recovery accommodations. The free side is on the left, with spacious rooms for mats or cots, and eating areas. The paying side is a bit more posh, with private and semi-private rooms. Again, the patient makes the choice of which side they will register. The eye wear “store” is huge, and replete with every kind of lens and frame design – all manufactured and fitted in-house.

The tour wends it way through the surgery areas, much bigger than anything we saw in Madurai. Many rooms are still unused, showing the main difference between the first and latest hospitals: Madurai is crowded, and always trying to squeeze more out of its space, whereas Pondicherry is looking to DOUBLE its present patient load before it starts to outgrow its space.

After a long afternoon of touring, we head back to our hotel and dine under the stars, overlooking the Indian Ocean. Just lovely.

Falling asleep, listening to the waves,
Dawn

Thursday, February 19, 2009

Day Three – Free Hospital and Vision Center, Madurai

Bookmark and Share
Apologies for the delay in posts as the internet connection here in India can, at times, be scarce. But back to the study tour…

Known as the Temple Town, Madurai boasts a series of 13 temples from different periods in Tamil Nadu history, and is the most famous of all temple areas in southern India.

Vision Center
We began our day with a short drive out of the city to the village of Alanganalure, which is known for its Bull Taming festival and the fierceness of the women from this region. Our focus was seemingly a bit more mundane, however, as we went to visit one of Aravind’s 37 vision centers in South India. Each of these centers is connected to one of five base hospitals. This one, for example, is connected to the one we visited in Madurai yesterday. Through a program with the U.C. Berkeley and Intel, they have a fixed point broadband system – with the vision centers at one end, and the base hospital at the other.

It was amazing to see this system in action. A doctor at the base hospital works with anywhere from five to 12 vision centers. The patient form the local village comes in to the vision center for a scheduled appointment, surgical follow-up or other eye issue. The vision center is staffed by two of the sisters – one who is responsible for the registration, patient flow and refractory products, and another who carries out the eye examination. Many of the same ophthalmologic tools in the hospital are in this facility – really an old shop-front about 10 feet wide and 30 feet deep. She will perform the routine tests of blood pressue, eye pressure, blood sugar, refraction, and fundus imaging, etc., right here, then connect with the doctor at the base hospital. This telemedicine technique is revolutionary as people unable to make the journey to the city can still talk “face-to-face” with the doctor, who has just received the test result for the patient electronically. The consultation takes place directly, and any medicines or corrective eye wear can be obtained immediately at the facility. Any surgical recommendations can be acted on as soon as the patient is ready to go to the hospital. The sisters are from the village, so have a good relationship with the patients, resulting in an experience that may be less intimidating than a hospital visit.

Besides the two sisters at the vision center, there are two field workers who are responsible for seeing one-half of the covered population (about 50,000) each year. Their task is to visit each house, and screen the vision of the inhabitants. They also encourage older residents to come in for annual glaucoma exam to decrease the effect of this disease. Because the loss of peripheral vision is so slow, a person with glaucoma may have no idea that their vision is decreasing until it is too late.

Free Hospital
After lunch, we set out for the Free Hospital at Aravind. Other Aravind hospitals around Tamil Nadu were built with free on one side, and paying on the other, and the surgery and specialty areas in between. Aravind Madurai started as an 11-bed hospital, and has grown in fits and spurts, adding space as needed. Because of that, the Free Hospital is on a separate campus, around the block from the Paying Hospital. Unlike in U.S. where free care only follows massive amounts of qualifying paperwork, the patients at Aravind select the hospital in which they are seen. There is a perception that if it costs more, it must be better, and that drives many families to sell a cow or take out a loan to afford treatment at the Paying side. Aravind does nothing to dispel this myth, as it keeps people more honest about their ability to pay. The interesting thing is that the care at Aravind hospitals do not differ at all, with the staff cycling though both hospitals during the week. The main difference is the accommodations. Instead of a private suite with one’s own bathroom, the Free Hospital offers mats on the floor or cots. This concept of choice also extends to the type of intraocular lens the patient selects.

A Little Sightseeing – Meenakshi Temple
After a reluctant goodbye to the Aravind staff, we headed back downtown to the Meenakshi Temple, tallest of the 13 in the city. We were hosted by two of the city’s leading authorities, and spent the afternoon exploring the beautiful stone interiors dating back thousands of years. This temple was built to honor Meenakshi, one of the forms of Shiva’s consort. She is Vishnu’s sister, and symbolizes the peaceful coexistence of the two lines of followers of Shiva and Vishnu. Some people believe it is why there is comparatively little religious conflict in the area. The story is that Shiva rode into town on his bull, and married the feisty goddess, making her submit (eyes down, etc.) before the marriage. When they were officially joined, the tables turned, and he submitted to her. On the occasion of the marriage, the streets flowed with milk and honey. We saw the Temple elephant being walked for his health, and the “People Tree” where women hang cradles in amongst the leaves and pray to have children.

All packed up, but sad to be leaving this land of milk and honey and the birthplace of Aravind. Tomorrow, we fly back to Chennai, and drive south from there to Pondicherry (Puducherry), an old French colony by the sea.

Dreaming of Madurai,
Dawn

Day Two – McSurgeries, Madurai

Bookmark and Share
What an incredible day! Day Two started off early so that we could observe a few eye surgeries. Study tour participants requested this addendum upon hearing more about Aravind’s efficient methods inspired by the McDonald’s assembly-line. Last year alone, Aravid performed 280,000 surgeries.

The first surgeries we saw were the cataract removal, Aravind’s signature procedure. Each operating theater has four beds and two surgeons. Each surgeon is stationed between two operating tables with one microscope. The apparatus swivels between, allowing the surgeon to switch between the two areas easily. The patient is led into the room, and prepped by the surgical team, comprised of trained sisters.

The surgeon deftly makes a small millimeter slit in the cornea, and inserts a surgical probe. After tearing a small hole in the sac surrounding the lens, she inserts a small ultrasound tool and proceeds to shatter the lens. She aspirates the lens bits out, and inserts the folded flexible replacement lens. With such a small incision, no suture is needed. The whole process took about 6 minutes. When she finishes, she replaces her surgical gloves and begins on the other table, with a new patient, clean tools, and different cataract. With this highly efficient process, a good surgeon will complete more than 30 surgeries in a day. The speed and grace of the surgical staff was wonderful to watch.

A Hospital
Next was our tour of one of Aravind’s Hospitals, following the same path as a patient would on a visit. We started in registration where a phalanx of sisters ran the intake area with an amazing smoothness, considering almost every patient is a walk-in. Aravind’s complex record keeping allows them to predict patient flows with a better than 0.5% accuracy, taking into account festival days, holidays, auspicious days and a myriad of other factors. Everywhere you see matrices showing the expected levels for the different surgeries, consultations and other services they provide.

Our tour continued through the pre-op areas where the patient is screened and monitored. After these metrics are recorded, the patient will meet with a doctor. There are not that many doctors, so the consultation lasts a very short time, consisting mostly of a diagnosis. The patient is then assigned a counselor who will spend a much longer period of time with each patient, going over the different treatment options, costs, recovery times and other follow-up issues.

We then moved upstairs to visit most of the specialty areas: glaucoma, diabetic retinopathy, low vision, uvea function and more. The areas were seemingly chaotic, but the time between registering and moving to your next area was very short. Aravind is also piloting a program where a patient is issued a card upon entering that will be embedded with a small microchip. Sensors in the building will chart the progress of the patient, and help forecast any sudden staffing or equipment needs. We also visited the research area where studies involving the Indian eye population are being carried out.

Aurolab
After lunch, we traveled to outskirts of Madurai where the Aurolab facility is located. Begun as a low-cost manufacturing alternative, Aurolab first developed a $10 intraocular lens when most lenses in the world were costing around $150. They now manufacture a wide array of lenses, along with ophthalmic pharmaceuticals, surgical blades, supplies and instruments. The level of cleanliness meets every standard in the world, including the FDA, but not all products are approved for use in the United States. Behind Aurolab is the new Aurofarm, an organic farm just recently started with the hopes of producing vegetables and providing a recreational area for the staff of Aravind. The layout is truly lovely, and includes a quarry pond, in-ground swimming pool and garden for their use.

Dinner included a program of indigenous folk dancing, including karagaattam, a dance where the dancer balances a pot on their head while balancing on a wooden ball, and silambattam, where the male dancers fight with long wooden sticks. The women also performed, including a version of the snake dance. The whole event took place next to a pool of water so smooth that it looked as if the dancer and her image were partners in the performance. Magical.

Tomorrow is our last full day in Madurai, and will include a trip to a vision center in the rural area outside of the city.

Until then,
Dawn

Tuesday, February 17, 2009

Day One – Aravind Hospitals, Madurai

Bookmark and Share
The study tour begins with a trip to LAICO, the Lions Aravind Institute of Community Ophthalmology. Our group is met by LAICO staff with glorious garlands of aromatic jasmine and cedar. Madurai is world famous for its jasmine, especially for the single garlands, malligi, usually worn daily by local women. The scent is intoxicating, and the welcoming ceremony, moving.

The staff, led by Aravind Chair Dr. P. Namperumalsamy (Dr. Nam), began an overview of Aravind Eye Care System. The detailed presentation outlined not only the surgical/medical excellence the organization is known for, but also highlighted the other facets of their success – commitment to serving everyone in pursuit of eliminating needless blindness, and an incredible knack for business management. This illustrated the scope and efficiency of Aravind, and gave a preview of what the study tour will witness in the coming days.

After lunch, study tour participants heard from the division of AECS, the LAICO education structure. Starting with a tour of the building, they addressed how their teaching facility not only served their internal needs for training medical and support staff, but also the greater ophthalmologic community. Students and practitioners from around the world descend on Aravind daily to take advantage of educational programs. The subjects range from eye care, to professional and managerial development, to global partnership opportunities.

During the tour, they introduced our STPs to the concept of Aravind “sisters.” These young women are recruited right out of high school from the rural areas surrounding Madurai. They spend one year of residence, training to work with patients, and are usually chosen to serve as patient counselors. After two years, they are ready to assist patients in navigating the world of eye medicine by explaining the surgical options available to them, accompany them during the surgery, explain in detail the correct post-operative care procedures, and encourage them to return for follow-up in four to six weeks. As most of the patients come from the same rural areas the girls hail from, working with them helps to dispel much of the trepidation that may come with visiting the hospital. This increases the likelihood of a successful procedure, and the girls have an opportunity not usually available to them in their villages. My hope is that the financial and educational independence they gain will ensure a better fate for their own girls.

After a day full of new information and new acquaintances, dinner featured some friends of Aravind – NGO partners and local industrialists, all vitally interested in the success of Aravind. Tomorrow will be an early morning, with the study tour joining the doctors in the operating theatre.

Eravu Vanakkangal (“Good Night” in Tamil)
Dawn

Sunday, February 15, 2009

Paleolithic Diet Clinical Trials Part III

I'm happy to say, it's time for a new installment of the "Paleolithic Diet Clinical Trials" series. The latest study was recently published in the European Journal of Clinical Nutrition by Dr. Anthony Sebastian's group. Dr. Sebastian has collaborated with Drs. Loren Cordain and Boyd Eaton in the past.

This new trial has some major problems, but I believe it nevertheless adds to the weight of the evidence on "paleolithic"-type diets. The first problem is the lack of a control group. Participants were compared to themselves, before eating a paleolithic diet and after having eaten it for 10 days. Ideally, the paleolithic group would be compared to another group eating their typical diet during the same time period. This would control for effects due to getting poked and prodded in the hospital, weather, etc. The second major problem is the small sample size, only 9 participants. I suspect the investigators had a hard time finding enough funding to conduct a larger study, since the paleolithic approach is still on the fringe of nutrition science.

I think this study is best viewed as something intermediate between a clinical trial and 9 individual anecdotes.

Here's the study design: they recruited 9 sedentary, non-obese people with no known health problems. They were 6 males and 3 females, and they represented people of African, European and Asian descent. Participants ate their typical diets for three days while investigators collected baseline data. Then, they were put on a seven-day "ramp-up" diet higher in potassium and fiber, to prepare their digestive systems for the final phase. In the "paleolithic" phase, participants ate a diet of:
Meat, fish, poultry, eggs, fruits, vegetables, tree nuts, canola oil, mayonnaise, and honey... We excluded dairy products, legumes, cereals, grains, potatoes and products containing potassium chloride...
Mmm yes, canola oil and mayo were universally relished by hunter-gatherers. They liked to feed their animal fat and organs to the vultures, and slather mayo onto their lean muscle meats. Anyway, the paleo diet was higher in calories, protein and polyunsaturated fat (I assume with a better n-6 : n-3 ratio) than the participants' normal diet. It contained about the same amount of carbohydrate and less saturated fat.

There are a couple of twists to this study that make it more interesting. One is that the diets were completely controlled. The only food participants ate came from the experimental kitchen, so investigators knew the exact calorie intake and nutrient composition of what everyone was eating.

The other twist is that the investigators wanted to take weight loss out of the picture. They wanted to know if a paleolithic-style diet is capable of improving health independent of weight loss. So they adjusted participants' calorie intake to make sure they didn't lose weight. This is an interesting point. Investigators had to increase the participants' calorie intake by an average of 329 calories a day just to get them to maintain their weight on the paleo diet. Their bodies naturally wanted to shed fat on the new diet, so they had to be overfed to maintain weight.

On to the results. Participants, on average, saw large improvements in nearly every meaningful measure of health in just 10 days on the "paleolithic" diet. Remember, these people were supposedly healthy to begin with. Total cholesterol and LDL dropped, if you care about that. Triglycerides decreased by 35%. Fasting insulin plummeted by 68%. HOMA-IR, a measure of insulin resistance, decreased by 72%. Blood pressure decreased and blood vessel distensibility (a measure of vessel elasticity) increased. It's interesting to note that measures of glucose metabolism improved dramatically despite no change in carbohydrate intake. Some of these results were statistically significant, but not all of them. However, the authors note that:
In all these measured variables, either eight or all nine participants had identical directional responses when switched to paleolithic type diet, that is, near consistently improved status of circulatory, carbohydrate and lipid metabolism/physiology.
Translation: everyone improved. That's a very meaningful point, because even if the average improves, in many studies a certain percentage of people get worse. This study adds to the evidence that no matter what your gender or genetic background, a diet roughly consistent with our evolutionary past can bring major health benefits. Here's another way to say it: ditching certain modern foods can be immensely beneficial to health, even in people who already appear healthy. This is true regardless of whether or not one loses weight.

There's one last critical point I'll make about this study. In figure 2, the investigators graphed baseline insulin resistance vs. the change in insulin resistance during the course of the study for each participant. Participants who started with the most insulin resistance saw the largest improvements, while those with little insulin resistance to begin with changed less. There was a linear relationship between baseline IR and the change in IR, with a correlation of R=0.98, p less than 0.0001. In other words, to a highly significant degree, participants who needed the most improvement, saw the most improvement. Every participant with insulin resistance at the beginning of the study ended up with basically normal insulin sensitivity after 10 days. At the end of the study, all participants had a similar degree of insulin sensitivity. This is best illustrated by the standard deviation of the fasting insulin measurement, which decreased 9-fold over the course of the experiment.

Here's what this suggests: different people have different degrees of susceptibility to the damaging effects of the modern Western diet. This depends on genetic background, age, activity level and many other factors. When you remove damaging foods, peoples' metabolisms normalize, and most of the differences in health that were apparent under adverse conditions disappear. I believe our genetic differences apply more to how we react to adverse conditions than how we function optimally. The fundamental workings of our metabolisms are very similar, having been forged mostly in hunter-gatherer times. We're all the same species after all.

This study adds to the evidence that modern industrial food is behind our poor health, and that a return to time-honored foodways can have immense benefits for nearly anyone. A paleolithic-style diet is a very effective way to claim your genetic birthright to good health. Just remember to eat the organs and fat. And skip the canola oil and mayonnaise.

Paleolithic Diet Clinical Trials
Paleolithic Diet Clinical Trials Part II
One Last Thought

Thursday, February 12, 2009

Flu Season is Here

I just checked Google Flu Trends and flu season is upon us. It's time to tighten up your diet, find a good source of vitamin D and avoid sick people. Avoid sugar, industrial vegetable oil and processed food in general as they lower immunity. If you feel like you're coming down with something, consider fasting to nip it in the bud. It works for me.

Low Stomach Acid and Nutrient Absorption

As I mentioned here and here, low stomach acid (hypochlorhydria) causes many problems, including bacterial overgrowth in the small intestine, lowered resistance to infection by ingested pathogens, an increase in gastric cancer susceptibility, and reduced nutrient absorption. It has the potential to underlie many other issues, including food sensitivities. The prevalence varies by age, increasing from less than 10% in the young to over 50% in the elderly.

In a previous post, I mentioned a few nutrients I had come across that require full stomach acidity for optimum absorption. I recently found a nice paper from 1989 titled "Hypochlorhydria: a Factor in Nutrition", which broadened my perspective. Here's a revised list of nutrients known to be affected by hypochlorhydria, as of 1989:
  • Calcium
  • Iron
  • Folic acid
  • Vitamin B6
  • Vitamin B12
  • Vitamin A
  • Vitamin E
  • Niacin
  • Protein
That's a hefty list, and it's not even comprehensive!

Monday, February 9, 2009

Cranial Development in Nepal, etc.

I saw a great movie on Saturday called "The Sari Soldiers". It's a documentary about the bloody three-way struggle between the Nepalese monarchy, Maoists, and political parties that ended with the dissolution of the monarchy in 2008. It's shot from the perspective of several very strong women affected by wartime atrocities.

I was getting on my friend's nerves during the movie because I couldn't stop commenting on the beautiful teeth, broad faces and great skin nearly everyone had. These were not actresses, they were regular people. They almost all had straight teeth and broad dental arches. I came to realize during the movie that people who have a great smile typically have a broad dental arch. There's something about seeing that wide, straight row of front teeth that attracts us. Here's a shot of one of the main characters (click for a larger view):

The Maoist army claimed to be 40% women. They were marching with heavy sacks and rifles all over the countryside, fighting the royal Nepalese army. That's no job for the feeble.

Of course, I had to look up Nepalese food as soon as I got home. It centers around rice, legumes and dairy, with a few spices, some vegetables and a modest amount of meat. Their primary fats are ghee (clarified butter) and yak butter. The national dish is called dal bhat, which means "lentils and rice". Here's one of the first recipes I found in a Google search:

Plain Rice (Bhat)
2 cups rice (Basmati or Long grain preferred)
4 cups (1 lt) water
1 tsp butter (optional)

Lentils (Dal)
1½ cups lentil (any kind)
4 to 5 cups of water (depends preference of your consistency of liquid)
½ tsp turmeric
1 tsp garlic, minced
6 tbsp clarified butter (ghee)
3/4 cup sliced onions
2 chillies (dried red chilies preferred) (depends on your preference)
Salt to taste

OPTIONAL
¼ tsp (pinch) asafetida
¼ tsp (pinch) jimbu
1 tbsp fresh ginger paste

Rice:
Wash rice and soak for 5 minutes.
Wash rice and soak for 5 minutes.

Boil the rice over medium heat for about 10 -15 minutes. Stir once thoroughly. Add butter to make rice give it taste as well as make it soft and fluffy.

Turn the heat to low and cook, covered, for 5 more minutes until done

Lentils:

Wash lentils and soak lentil for 10 minutes.

Remove anything that float on the surface after it and drain extra water.

Add drained lentils in fresh water and bring to a boil again. Add all spices.

Reduce the heat and simmer, covered, for 20 to 30 minutes until lentils are soft and the consistency is similar to that of porridge.

In a small pan heat the remaining of butter and fry the onions, chilies and garlic.

Stir into the lentils few minutes before you stop boiling. Serve with rice.

Did you catch the quantity of butter it calls for? 6 tablespoons of ghee and a tablespoon of butter! By my calculations, that's 784 calories worth of dairy fat for a 3,124 calorie dish, or about 25% butter by calories. I'd be willing to bet their butter is not the anemic industrial variety. With the amount of vitamin K2 MK-4 their diet is providing, it's no wonder their dental arches and teeth look so good. I'm sure not everyone can afford to eat that quantity of butter, but it's clearly a staple food in Nepal.

That recipe would typically be made with split lentils, which it's not critical to soak (although I still do). Recipes that called for whole lentils typically recommended a long soak before cooking.

Nearly everyone in the movie had great skin as well. Even the older people had nice skin. It was wrinkled, but firm and smooth between the wrinkles. Yet another feature of healthy cultures. Take a look at chief Sealth of the Suquamish and Duwamish tribes at 78 years old (photo taken in 1864). He's the city of Seattle's namesake. He lived most of his life as a hunter-gatherer in the Pacific northwestern United States:

OK, it's not the sharpest picture, but I think it's clear his skin is relatively smooth and firm for a 78-year-old. The object on his knee is the tribe's traditional reed hat.

I'll leave you with a quote from a book I'm currently reading, Paleopathology at the Origins of Agriculture:
Dental crowding should be indicative of nutritional or other chronic, severe stress since teeth will be less affected by chronic stress than alveolar bone size. Widdowson and McCance (1964) have demonstrated this effect in undernourished piglets and Trowell and co-workers (1954) have noted increasing crowding and impacted molars in severely malnourished children. Increased dental crowding may be indicative of severe and chronic stress in archaeological populations. However, we are unaware of the use of this potential indicator in any evaluation of health in prehistory.
So in archaeological sites, dental crowding is "indicative of nutritional or other chronic, severe stress", but in modern populations it's a fact of life? I think this is a testament to how resistant people are to coming to logical conclusions that challenge cultural norms.

2008 Gates Award Study Tour

Bookmark and Share



The Global Health Council is hosting a study tour of influential global health leaders from around the world to learn about the work of 2008 Gates Award for Global Health recipient, Aravind Eye Care System. Aravind received the award in recognition of its groundbreaking work to prevent debilitating blindness and provide affordable, world-class eye care to the poor. Based in Tamil Nadu, India, Aravind provides an integrated approach to the provision of eye care services to a large population in southern India and has established a new model of financial self-sustainability.

Study Tour Participants:

Dr. Mulu Admasu, Chief of Eye Surgery, ALERT Hospital, Ethiopian Ministry of Health
Dr. Ponni Subbiah, Vice President and Head, Global Access Strategy, Pfizer Inc.
Dr. Suzanne Gilbert, Director, Center for Innovation in Eye Care, Seva Foundation
Fred de Sam Lazaro, Global Health Correspondent, NewsHour with Jim Lehrer
Maurice Middleberg, Executive Vice President, Global Health Council
Dawn Ellen Carey, Awards Program Coordinator, Global Health Council
Jim Wiggins, Independent Consultant


Join Dawn Carey, awards coordinator at the Global Health Council, and follow the Study Tour’s journey through Madurai and Pondicherry daily, as it happens.

Madurai
Day 1 – Aravind hospital sites
Day 2 – Surgeries, Hospital and Aurolab
Day 3 – Aravind Free Hospital and Remote Vision Center

Pondicherry
Day 4 – Pondicherry Hospital
Day 5 – Auroville and Aurobindo Ashram
Day 6 - Remote Eye Camp

Friday, February 6, 2009

More Thoughts on Hydrogen Gas and Bacterial Overgrowth

It's probably not a coincidence that H. pylori lowers stomach acidity. It's trying to feed itself. Lowering stomach acidity promotes poor digestion and extra food for hydrogen gas (H2)- producing bacteria further down the digestive tract. H. pylori thrives on the resulting increase in H2. There are countless examples in nature of parasites manipulating hosts to get what they want. A pretty simple example is Bordetella pertussis, the bacterium that causes whooping cough. It secretes factors that irritate the trachea, causing the victim to cough and thus facilitating its own spread through airborne droplets.

H2 is a high-energy molecule. In fact, it's being considered as an automobile fuel. It's also very small, allowing it to diffuse away from the digestive tract and throughout the tissues. Overproducing H2 in the digestive tract creates an all-you-can-eat buffet for whatever bacteria are present in the body that are capable of using it. As I mentioned in the last post, these bacteria include H. pylori, Salmonella and perhaps Clostridium. Nature abhors a vacuum. I'm sure there are organisms happy to siphon off some of this fuel. The interior of the body is relatively sterile, but there are plenty of bacteria hanging around the mucous membranes (nasal cavity, digestive tract, urogenital tracts) that could potentially exploit this energy source.

How do we thwart H. pylori and take back control of our stomachs? There are a few options. The first is to send in the big guns and take antibiotics. This is the standard treatment and it's usually effective, but I'm generally against antibiotics unless absolutely necessary due to their long-term effects on beneficial gut flora. Then there are other treatments like mastic gum, peppermint, gentian and probiotics, which may or may not be effective.

But the method I like best is starvation (of H. pylori). Obviously, the first step is to eliminate excess fructose, wheat, and anything else that causes digestive upset and gas. Several commenters on the last post mentioned that eating a "paleolithic"-type diet improved their digestion and reduced gas. That makes perfect sense to me, and it may actually be a very important effect of that type of diet. The same goes for low-carbohydrate diets. Two other weapons of intestinal flora starvation are chewing thoroughly and avoiding liquids during meals. The former allows you to absorb the maximum amount of calories from your food as rapidly as possible, leaving less for the bacteria. The latter makes digestion more effective by keeping stomach acid concentrated. A little bit of liquid such as a small glass of wine is probably fine.

If necessary, the next step may be to restore full stomach acidity, further cutting off the supply of H2 to H. pylori and breaking the cycle of reduced acidity, leading to increased H2, leading back to increased H. pylori growth. Sufficient stomach acid may also inhibit H. pylori directly, but there isn't much research on this. Restoring stomach acidity is pretty easy to do using betaine HCl supplements. Many people report improved digestion when they use betaine HCl. These basically release hydrochloric acid into the stomach, lowering pH. Most of them also contain pepsin, a protein-digesting enzyme secreted by the stomach. Buy them in capsule form rather than tablets so they dissolve rapidly.

Ideally, you should have your stomach pH checked to confirm you have insufficient stomach acidity before taking betaine HCl. If it's not lacking, there's no point in taking it (although trying it won't do you any harm beyond a little discomfort). But if you want to skip the expense, there are web pages that can teach you how to use subjective measures to determine if it's helpful for you. Some people feel that the stomach eventually "learns" to produce enough HCl again after a course of betaine HCl, after which they can stop taking it. This may reflect a suppression of H. pylori.

I think it's notable that healthy traditional cultures that ate plant foods didn't do it haphazardly. First of all, they typically ate the minimum amount of fiber necessary to get their calories. If they could remove fiber from their food, they did. For example, ogi is a widespread grain porridge eaten in Western Africa. To make it, you soak millet, corn or sorghum overnight. Then you pound it, mix it with water and strain it through a sieve. This removes the bran but allows most of the suspended starch through. The bran is fed to the animals, while the starch is fermented, cooked and eaten.

This is typical of healthy non-industrial cultures. They don't care about the glycemic index of starches, they care about maximizing digestibility and assimilation. In the process, they are minimizing food for their digestive flora. Fermenting grains before cooking may also reduce the amount of food left for gut bacteria. Starchy tubers and fruit (plantain, breadfruit) are also common features of healthy traditional cultures. They cook them thoroughly, sometimes mash them, and sometimes ferment them as well (e.g., poi).

Low-calorie vegetables are not staple foods in most of the world's healthiest non-industrial cultures, including hunter-gatherers. That's the main reason why I'm skeptical of the claim that eating immoderate quantities of vegetables is essential for health.

I do think it's worth mentioning that although they tried to minimize fiber, many (but not all) healthy non-industrial cultures nevertheless ate a lot of it and did just fine. It was inescapable for many of them. If you don't have the technology to remove rice bran, you have to eat it along with the starch. It may be just as well. Bran carries a disproportionate amount of vitamins and minerals. But it also comes along with a disproportionate share of toxins, which must be inactivated prior to eating by soaking, sprouting or fermentation. Healthy grain-based cultures knew this well, but we seem to have forgotten it in modern times.

Wednesday, February 4, 2009

Sugar, Hydrogen, Bacteria and Maldigestion

There are several ways to cause a nutrient deficiency. The first is to eat too little of a nutrient. Another way is to burn through your body's nutrient stores at an accelerated rate, for example, what omega-6 vegetable oils do to vitamin E, and what wheat bran does to vitamin D. A third way is to eat enough nutrients but fail to absorb them efficiently.

A good way to reduce your absorption of nutrients is to lower your stomach's acidity. This will protect you from those pesky nutrients protein, vitamin B12, and iron (and probably others as well). The stomach is one tough organ. When it receives food, a healthy stomach lowers its pH to roughly 2.0 by secreting hydrochloric acid. That's more acidic than lemon juice and more than 10 times more acidic than vinegar. This begins to break food down, and will kill most bacteria and other pathogens. Stomach acidity is basically the body's way of "cooking" food before further digestion. At the same time, the stomach secretes pepsin, which is an acid-stable enzyme that digests protein.

Insufficient stomach acidity promotes bacterial overgrowth in the small intestine and allows undigested proteins into the intestine. The gastrin knockout mouse, which is incapable of producing stomach acid, suffers from bacterial overgrowth, inflammation, damage and precancerous polyps in its intestines. The same thing happens when you treat mice with a drug that inhibits stomach acidification.

There are a few different ways to reduce your stomach's acidity level. The most straightforward is to take an antacid, or any number of drugs that lower stomach acidity (as in the mouse study above). But can we do it naturally? Sure, all it takes is a little Helicobacter pylori infection! Luckily, most people already have one.

H. pylori is a bacterium that's the main proximal cause of stomach ulcers. Antibiotics are now the standard treatment for ulcers, and they're effective. Treating an asymptomatic H. pylori infection with antibiotics increases stomach acidity, suggesting that H. pylori is capable of suppressing the secretion of stomach acid. In another study, eradicating H. pylori with antibiotics improved nearly all patients suffering from hypochlorhydria (insufficient stomach acid).

Like any organism, H. pylori likes to stay well-fed. Its favorite food is hydrogen gas (H2), and the more it gets, the more it grows. It's not the only bacterium to like H2. Salmonella, of food poisoning fame, requires H2 to become pathogenic. Clostridium bacteria are also associated with elevated H2. H2 is produced by the fermentation of food by bacteria in the digestive tract. It's very small so it diffuses around the body, reaching the stomach lining where it's eagerly gobbled up by H. pylori. It may be equally good food for a number of other parasites around the body.

Now let's stop beating around the bush and get to the meat of this post. It's all summed up in a beautiful title: Fructose Intake at Current Levels in the United States May Cause Gastrointestinal Distress in Normal Adults. Dr. Richard W. McCallum et al. fed doses of isolated fructose to 15 normal adults. Can I say it any better than the abstract?
More than half of the 15 adults tested showed evidence of fructose malabsorption after 25 g fructose and greater than two thirds showed malabsorption after 50 g fructose... Fructose, in amounts commonly consumed, may result in mild gastrointestinal distress in normal people.
Here's where it gets really interesting. One of the measures of malabsorption they used was H2 on the breath. Both the 25g and the 50g doses caused a large increase in H2, especially the 50g dose (5-fold increase). This is the same thing you see in people who are lactose intolerant. Bacterial fermentation is the only significant source of H2 in the human body. That means the fructose was hanging around in the small intestine for long enough to be decomposed by the local bacteria, who took advantage of it to proliferate.

Certain types of fiber also promote H2 production. Resistant starch, as well as certain non-caloric sweeteners, are readily fermented into H2 in some people. Cellulose, the predominant fiber in vegetables and grains, does not increase H2. The large difference in fiber content of rural vs. urban Mexican diets
doesn't seem to correlate with H2 production by intestinal bacteria. Interestingly, both white and whole wheat bread increase H2 production.

Let's put those doses of fructose into perspective. One medium banana contains about 7 grams. A 16-ounce bottle of apple juice contains about 30 grams. A slice of cake contains about 12. One "child-size" 12 ounce cup of Coca-Cola from McDonald's contains 17 grams (as long as you don't get a refill!). One large 32 ounce Coca-Cola contains 47 grams. Your H. pylori will be VERY pleased if you drink one of those, especially if you use it to wash down the white flour bun on your hamburger.

I do think it's important to mention that the study described above used isolated fructose. It's not clear that other sources of fructose would behave the same. For example, the presence of glucose enhances fructose absorption. Fruit, table sugar and high-fructose corn syrup all contain glucose. It's also not clear what the effect would be of eating fructose with a meal rather than in isolation. None of this has been studied to my knowledge, so we're left extrapolating from studies that used pure fructose.

Now let's connect the dots. Excessive fructose, certain types of fiber, and wheat cause bacterial overgrowth and H2 production (if you believe the fructose-H2 connection). Elevated H2 causes overgrowth of H. pylori and possibly other pathogenic bacteria in the body. H. pylori lowers stomach acid, causing further overgrowth of bacteria in the small intestine. This causes inflammation and increases the risk for digestive cancers.

Decreased stomach acid also causes malabsorption of protein, B12, iron and perhaps other nutrients. It allows undigested protein to travel into the small intestine. This could potentially be very important. For example, many people are allergic to the casein in milk. It's one of the two most common alleriges, along with gluten. Both casein and gluten are proteins. A normally functioning stomach at the proper pH should completely digest casein. You can't be allergic to casein if there's none around. I don't know if the same applies to gluten.

Robust digestion may explain why many healthy non-industrial groups do very well eating dairy, sometimes to the exclusion of nearly everything else, yet many people in modern societies do better without dairy protein (butter is typically well tolerated). This phenomenon could also go a long way toward explaining the fact that allergies are becoming more and more common in industrial nations as we consume more sugar.

Thanks to Peter and Matt Stone for some of the ideas I incorporated into this post. Thanks to pbo31 for the CC photo.